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Anselme ATCHOGOU, Abdoul MALIK

DEEP LEARNING APPROACHES FOR MALARIA DIAGNOSIS:
A COMPARATIVE STUDY OF CUSTOM CNN AND TRANSFER
LEARNING MODELS IN BLOOD SMEAR ANALYSIS

ABSTRACT

The Plasmodium genus of single-celled parasites is the cause of malaria. These
parasites are spread to humans through the bite of an infected Anopheles mosqui-
to. Particularly in sub-Saharan Africa, where it severely strains health systems and
economics, the illness remains an essential public health issue. Effective diagno-
sis and treatment are crucial for controlling and eventually eliminating malaria.
The microscopic analysis of blood smears is the conventional yet labour-inten-
sive method for diagnosing malaria, demanding extensive expertise. Automated
detection through deep learning presents a vital alternative, particularly crucial
for sub-Saharan Africa. This study aims to meticulously compare the performance
of a custom-designed Convolutional Neural Network (CNN) with five advanced
transfer learning models, ResNet50, VGG19, InceptionV3, EfficientNet-B3, Effi-
cientNet-B7, and YOLOv11m, in categorizing segmented red blood cell images
for malaria detection. Our approach involves comprehensive image preprocessing,
data augmentation, and the implementation of various models. The models were
evaluated using a National Library of Medicine dataset based on various metri-
cs, including F1 Score, Accuracy, Precision, Recall, Matthews Correlation Coefti-
cient (MCC), AUC ROC, and AUC PR. The EfficientNet-B3 model emerged as the
top performer, surpassing even the custom CNN with an impressive F1 Score of
98.12%, Accuracy of 98.08%, and an MCC of 96.15%, demonstrating its superior
predictive power and reliability. YOLOv11m also showed strong performance with
an F1 Score of 96.89%, Accuracy of 96.93%, and MCC of 93.91%, highlighting its
efficiency for real-time applications. Although the custom CNN did not outper-
form the advanced models, it still exhibited commendable performance, unders-
coring the potential of tailored architectures. The results of this study demonstrate
the great potential that deep learning methods have to improve the precision of
malaria diagnosis, providing notable benefits to the healthcare systems, especially
for regions most severely impacted by the disease.

Keywords: Malaria Diagnosis, Deep Learning, CNN, Transfer Learning,
Healthcare.
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SITMA TANISI iCIN DERIN OGRENME YAKLASIMLARI: KAN
SURUNTUSU ANALIZINDE OZEL CNN VE TRANSFER OGRENME
MODELLERININ KARSILASTIRMALI CALISMASI

0z

Tek hiicreli parazitlerin Plasmodium cinsi, sitmanin nedenidir. Bu parazitler,
enfekte olmus Anopheles sivrisineklerinin 1sirmasiyla insanlara bulagir. Ozellikle
saglik sistemlerini ve ekonomiyi ciddi sekilde zorlayan Sahra alt1 Afrika'da, bu
hastalik 6nemli bir halk sagligi sorunu olmaya devam etmektedir. Sitmay1 kon-
trol altina almak ve nihayetinde ortadan kaldirmak i¢in etkili tan1 ve tedavi ¢ok
onemlidir. Kan yaymalarinin mikroskobik analizi, sitmay1 teshis etmek i¢in ge-
leneksel ancak emek yogun bir yontemdir ve kapsamli uzmanlik gerektirir. Derin
ogrenme yoluyla otomatik tespit, 6zellikle Sahra alt1 Afrika i¢in hayati bir alter-
natif sunmaktadir. Bu ¢alisma, sitma tespiti i¢in segmentlere ayrilmis kirmizi kan
hiicresi goriintiilerini siniflandirmada, 6zel olarak tasarlanmis bir Convolutional
Neural Network (CNN) ile bes gelismis transfer 6grenme modeli olan ResNet50,
VGG19, InceptionV3, EfficientNet-B3, EfficientNet-B7 ve YOLOv1lm'nin per-
formansini titizlikle karsilagtirmayr amaglamaktadir. Yaklagimimiz, kapsaml
goriintii 6n isleme, veri artirma ve ¢esitli modellerin uygulanmasini icermektedir.
Modeller, F1 Skoru, Dogruluk, Hassasiyet, Geri Cagirma, Matthews Korelasyon
Katsayis1 (MCC), AUC ROC ve AUC PR gibi ¢esitli metriklere dayali olarak Ulu-
sal Tip Kiitiiphanesi veri seti kullanilarak degerlendirildi. EfficientNet-B3 modeli,
%98,12'lik etkileyici bir F1 Skoru, %98,08'lik Dogruluk ve %96,15'lik MCC ile 6zel
CNN'yi bile geride birakarak en iyi performans gosteren model olarak one ¢ikt1
ve iistiin tahmin giicii ve giivenilirligini kanitladi. YOLOv11m de %96,89 F1 Sko-
ru, %96,93 Dogruluk ve %93,91 MCC ile giiglii bir performans sergiledi ve gercek
zamanli uygulamalar igin verimliligini vurguladi. Ozel CNN, gelismis modelleri
geride birakmasa da, yine de 6vgiiye deger bir performans sergiledi ve 6zel olarak
tasarlanmis mimarilerin potansiyelini vurguladi. Bu ¢alismanin sonuglari, derin
6grenme yontemlerinin sitma tanisinin dogrulugunu artirma konusunda biiyiik
potansiyele sahip oldugunu ve 6zellikle bu hastaliktan en ciddi sekilde etkilenen
bolgelerde saglik sistemlerine 6nemli faydalar sagladigini gostermektedir.

Anahtar Kelimeler: Sitma Tanisi, Derin Ogrenme, CNN, Transfer Ogrenme,
Saglik Hizmetleri.
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Highlights

o EfficientNet-B3 achieved the highest performance with an F1 Score of
98.12% and an MCC of 96.15%.

o Custom CNN showed promise with tailored architectures for malaria detection.

o Six advanced transfer learning models, including ResNet50 , Efficient-
Net-B7, and YOLOv11m, were compared.

o Comprehensive preprocessing and data augmentation enhanced diagnostic
accuracy.

o Study highlights the potential of deep learning for improving malaria diag-
nosis.

1. INTRODUCTION

Malaria is an acute febrile illness predominantly afflicting tropical and subt-
ropical regions. Its transmission cycle is facilitated by the Anopheles mosquito,
which serves as a vector for the Plasmodium parasite that is injected into humans
during a mosquito’s blood meal [1]. The pathology of malaria involves a complex
lifecycle with the parasites multiplying in the liver before invading red blood cells,
often leading to severe clinical manifestations [2]. Five Plasmodium species infect
humans, with P. falciparum and P. vivax accounting for most global malaria mor-
bidity [3]. The World Health Organization reports a staggering 229 million cases
worldwide in 2019, with a significant mortality burden [4]. In regions where mala-
ria is endemic, such as sub-Saharan Africa, the disease’s prevalence is compounded
by insufficient healthcare infrastructure and a shortage of skilled diagnosticians
[5]. The global health community, driven by initiatives like the United Nations
and the Gates Foundation, aims to eradicate malaria by 2040 [6]. The realization
of these goals hinges on the advancement of rapid, accurate diagnostic modalities.

While adequate, traditional microscopic examination of stained blood smears
is time-consuming and relies heavily on pathologists’ expertise [7]. Consequent-
ly, there is a critical need for innovative diagnostic solutions, especially in resour-
ce-limited settings. To address this issue, research has pivoted towards leveraging
computer vision, machine learning, and deep learning techniques, which have
shown promise in automating the detection of malarial parasites [8]. Convoluti-
onal Neural Networks (CNNs), Transfer Learning, and Model Ensembles repre-
sent the cutting edge of such technologies, demonstrating capabilities that rival
human expertise.
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This study aims to evaluate the effectiveness of a custom CNN model in com-
parison to preeminent transfer learning architectures ResNet50, VGG19, Incep-
tionV3, EfficientNet-B3, EfficientNet-B7, and YOLOv11m in the classification of
segmented blood cell images for malaria detection. The comparative analysis em-
ploys an array of performance metrics, including F1 Score, Accuracy, Precision,
Recall, Matthews Correlation Coefficient (MCC), AUC ROC, and AUC PR, using
a dataset provided by the National Library of Medicine. Our results illuminate the
potential of deep learning applications to significantly improve malaria diagnos-
tics, potentially offering life-saving support in the most affected regions.

The paper is structured into several main parts. It begins with a ‘Literature Re-
view; which places the study within the broader research field. Next, the ‘Materials
and Methods section thoroughly explains the Dataset, System Design, and Model
Architectures. The ‘Results and Discussion’ section then interprets the study’s find-
ings. Finally, the ‘Conclusion’ section succinctly wraps up the research and sug-
gests avenues for further investigation.

2. RELATED WORKS

Machine learning (ML) and deep learning (DL) approaches have entirely
changed the search for an efficient method of detecting malaria. Traditional ML
methods hinged on manual feature extraction, drawing from domain knowledge
of blood smear morphology and parasitic life cycles. Savkare and Narote [9], Baira-
gi and Charpe [10], and others have employed a variety of features ranging from
textual and morphological to statistical, feeding these into algorithms like SVMs
and AdaBoost for classification tasks with notable successes.

The inception of deep learning has shifted the paradigm from manual to au-
tomatic feature learning. CNN, for example, have automated feature extraction
processes, leading to significant breakthroughs in accuracy and efliciency. Ma-
gsood et al. [11] achieved an accuracy of 96.82% with CNNs enhanced by image
augmentation. Rajaraman et al. [8] attained high specificity and sensitivity using a
pre-trained ResNet50 model, demonstrating the effectiveness of transfer learning
in this field. Farah and Ammar (2023) proposed a basic CNN model consisting of
3 convolution blocks followed by fully connected layers. They compared the pro-
posed CNN model with other pre-trained models, including VGG-19, ResNet50,
DenseNet121, and Inception V3. The results of their proposed CNN achieved an
accuracy score of 97% [12]. Irmak (2021) presented a pioneering deep-learning
technique for malaria disease detection, employing a Convolutional Neural Net-
work (CNN) with 20 weighted layers. The model achieved an impressive overall
accuracy score of 95.28% [13].
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Krishnadas and Sampathila (2021) focus on employing deep learning tech-
niques implemented in PyTorch, mainly transfer learning, for malaria detection in
segmented red blood cell images. Their method consists of using pre-trained Im-
ageNet models (ResNet, DenseNet, etc.) and fine-tuning them to identify infected
(parasitized) or uninfected cell pictures. Notably, they report that the DenseNet121
model achieved the highest accuracy of 94.43% in this task [14].In their work pub-
lished in 2023, Omar Faruq Goni et al. introduced an innovative approach for ma-
laria prognosis utilizing the Extreme Learning Machine (ELM) algorithm. Their
method incorporates Convolutional Neural Networks (CNN), ELM, and double
hidden layer (DELM) as classifiers. Notably, their proposed CNN-DELM meth-
od achieved an impressive accuracy rate of 97.79% [15]. In their 2023 study, Al-
muhaya et al. [16] compared the performance of four CNN models (GoogLeNet,
DenseNet161, MobileNet_v2, and ResNet18) in detecting malaria using the pub-
licly available Malaria Cell Images Dataset from NIH. Their results revealed that
DenseNet161 achieved the highest accuracy, reaching 95.86%.

Agrawal et al. (2024) employed the Malaria Cell Images Dataset from Kaggle
to assess the efficacy of semi-supervised learning methods in attaining high accu-
racy despite having limited labelled data. Remarkably, their approach achieved an
impressive accuracy rate of 96% [17]. Nakasi et al. [18] explored approaches such
as Faster-RCNN for object detection in malaria diagnosis, achieving an accuracy
0f 93.03%. Quan et al (2020) proposed the Attentive Dense Circular Net (ADCN),
a classification model based on Convolutional Neural Networks (CNN), combin-
ing the principles of residual and dense networks with an attention mechanism.
Trained and evaluated on a public dataset of red blood cell images, the model was
compared with several established CNN architectures. The results show a clear su-
periority of ADCN, achieving an accuracy of 97.47%, a sensitivity of 97.86% and a
specificity of 97.07%, systematically outperforming the best reference models[19].

Magotra and Rohil (2022) proposed two pre-trained CNN models using VGG-
16 and Inception V3. Their results achieve 96% accuracy [20]. According to Pimple
et al. (2022), CNN models are more efficient than Feed-Forward Neural Networks
(FFNs). They advocate for using CNN, citing that the filters utilized in CNNs ex-
tract image patterns while reducing data transfer across layers, thereby enhancing
efficiency. The author proposed a CNN model and trained it using malaria imag-
es. Their CNN model achieved an impressive accuracy score of 94.52% [21]. In
their study in 2016, Liang et al. (2016) introduced a machine-learning technique
employing a CNN to categorize individual cells in thin films autonomously [22].
Using a unique 16-layer CNN model on cell pictures, scientists achieved an average
accuracy of 97.37% during ten-fold cross-validation on a 27,578 single-cell dataset.

Recent studies have incorporated advanced object detection models like YOLO
for malaria parasite detection. For instance, this paper [23] proposed a Fine-Tuned
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YOLO-Based Deep Learning Model for Detecting Malaria Parasites and Leuko-
cytes in Thick Smear Images. The findings from these studies highlight YOLO’s po-
tential for fast and accurate detection in diverse imaging conditions. In conclusion,
the literature presents a trajectory of continuous improvement in malaria detection
techniques. As computational power grows and machine learning algorithms be-
come more refined, the capability of these models to accurately identify malaria
from cell images continues to advance, offering promising implications for global
health, especially in regions most affected by the disease.

3. MATERIALS AND METHODS

This study used Google Colab [24], which has an Nvidia Tesla T4 GPU and 32
GB of RAM for computational work. Python 3.10 was used for programming via
the Jupyter interface. The OpenCV library was used for image processing, and Ke-
ras [25], with a TensorFlow [26] backend, was used to create deep-learning models.
Regarding YOLOv11m, the Ultralytics YOLO library [27] was used.

The system architecture diagram below (Figure 1) illustrates the workflow
adopted in our study, which encompasses data procurement to the final classifi-
cation outcomes. This schematic visualizes the methodical procedure to evaluate
the efficacy of various deep-learning models in identifying malaria from blood
smear images.

= Custom CNN «

- ResNats0
VG613 z
= £ § ——  Parasitizad
=z NN
»§§ « IncaptionV § = £ |+
£ = 8 i
(1]
= ~ EMficlantNetBY & + Uninfacted
+ Efficienthat-B7 - .-
«  YoLotm

Figure 1. System Architecture Diagram
3.1. Dataset

This study utilizes the “National Library of Medicine” dataset, available on Ka-
ggle [28], which is part of the “National Institutes of Health” collection in the Uni-
ted States. The dataset comprises segmented red blood cell images derived from
Giemsa-stained slides, contributed by 150 infected and 50 uninfected individuals
[8]. This balanced dataset contains 27,558 erythrocyte images, evenly split between
parasitized and non-parasitized groups, as demonstrated in Figure 2 with examples
from both categories.
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The dataset is divided into three sets: training, validation, and testing. The trai-
ning set includes 80% of the data. A subset of the training data, 20%, is reserved for
validation to fine-tune the model parameters. The remaining 20% of the original
dataset is set aside as the test set, which is used to evaluate the model’s performance
on data it has never seen before. These proportions ensure that the model has a
substantial amount of data for learning, a sufficient number of images for validati-
on during the learning process, and a separate set for final performance evaluation.
Figure 3 shows samples distributed according to the categories.

£
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Figure 2. (a) Displays Parasitized Images, and (b) Uninfected Images

Distribution of samples according to the categories
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Figure 3. Samples distributed according to the classes
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3.2. Data Preprocessing
o Image Color (RGB) Distribution and Histograms

Each image’s RGB intensity levels are analyzed, confirming their distribution
predominantly within the range of 140 to 220. This consistency in intensity levels
across parasitized and non-parasitized cells aids in a more straightforward analy-
sis. Figures 4 and 5 provide an example of RGB color distribution and histogram.

Criginal Image RES Inbensity Dstribusan Histogran

a0
o

- . i
) .’l \L, £
J — A A |

1 = 100 10 210 o 3 = S e m 0

Figure 4. RGB Color Distribution and histogram in a sample parasitized image

Criginal b REA Intunsity Distribgion Histoam
s

Figure 5. RGB Color Distribution and histogram in a sample non-parasitized image
o Image Resizing and Normalization
To accommodate the uniformity required for deep learning algorithms, all
images in the study have been resized to a standard dimension of (224 224) pixels.
Furthermore, standardization has been meticulously applied to each image, nor-
malizing the pixel values to center around the mean, which is instrumental in ex-

pediting the convergence during the model training phase.

The formula for pixel normalization encapsulates this process is given by equ-
ation 1.

I'=—; (1)

where is the original image matrix, and is the normalized image matrix.

OMUJEST, 2025, Cilt 5, Say! 2, Sayfa 51-71
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o Filtering - Noise Removal

Images often capture extraneous variations attributed to factors like inconsis-
tent lighting, surrounding environmental conditions, or particulate matter within
the camera lens. Such variations, broadly called noise, can obscure image details
and affect image quality (Figure 6). Since noise can adversely affect the performan-
ce of classification models, it is crucial to cleanse the images of these unwanted
artefacts to ensure precise classifications [11].

Criginal Image
F- T

Median Blurred

Bilateral Blurred Gaussian Blur
> ———— r— =

Figure 6. Noise Reduction Techniques in Image Preprocessing

Analysis of the depicted figures indicates the efficacy of Bilateral filtering
in maintaining edge definition while reducing noise. Nonetheless, reviews of
current literature suggest that median filtering stands out for its precision in
noise reduction [6].

o Data Augmentation

Data augmentation techniques were employed to enhance the diversity of the
dataset and simulate various imaging conditions. This process enriches the trai-
ning dataset by generating altered versions of the images, thereby providing a more
comprehensive set of patterns for the model to learn from. Utilizing the *Image-
DataGenerator' function from Keras, we implemented a series of transformati-
ons, including random rotations (' rotation_range=20"), width and height shifts
(‘width_shift_range=0.1", “height_shift_range=0.1"), shear intensity adjustments
(“shear_range=0.1"), zooming actions (‘zoom_range=0.1"), and horizontal flips
(“horizontal_flip=True"). These transformations mimic variations due to patient
movements and different slide preparations and help prevent overfitting, making
the model more robust to unseen data.

3.3. Machine Learning Methods

All the model experiments have been implemented using the hyperparameters
and callbacks mentioned in Table 1.
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Table 1. Model Training Parameters

Hyperparameter Value
Activation Function ReLU, Sigmoid
Cost Function Binary Cross-Entropy
Learning Rate 1x10*
Optimizer RMSprop
Epochs 20
Dropout Ratio 0.5
Batch Size 10
TensorBoard
Training Callbacks EarlyStopping
ModelCheckpoint

o Convolutional Neural Networks (CNN)

The efficacy of CNN in extracting and processing features from raw image data
forms the foundation of our system design. CNNs leverage the spatial hierarchies
of pixels within an image, employing local receptive fields, shared weights, and
pooling to reduce dimensionality while preserving essential features. This deep le-
arning methodology is particularly suited to differentiating between parasitized
and non-parasitized blood cells, which is critical for accurately diagnosing malaria.

The CNN architecture is shown in Figure 7, which starts with an input layer
designed to handle images that are 224x224x3, which represent height, width, and
RGB color channels. Next comes a series of convolutional layers that extract basic
features using 32 filters with a 3x3 kernel size. These are paired with max-pooling
layers that reduce the spatial dimensions by half, providing translational invariance
while reducing computational complexity.

The architecture continues interleaving convolutions and pooling, with each
stage incrementally abstracting higher-level features. Notably, the final convolutio-
nal stratum augments the filter quantity to 64, supplying an enriched feature set for
subsequent classification. These features are then flattened into a one-dimensional
array, facilitating the transition to the densely connected layers. A dense layer with
1024 neurons functions as an advanced feature classifier, followed by a dropout la-
yer aimed at preventing overfitting by randomly disregarding neuron connections
during training. The network culminates with a sigmoid activation function in the

OMUJEST, 2025, Cilt 5, Sayi 2, Sayfa 51-71
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output layer, providing the input image’s classification probability. The architecture
boasts 12,884,993 trainable parameters, indicative of the model’s complexity and
capacity for feature extraction and classification. The model’s significant trainable
parameter count underscores its comprehensive adaptability, honed through ba-
ckpropagation during training. With a storage requirement of approximately 49.15
MB, the model’s voluminous structure is well-suited for malaria detection from
cell images.

« EfficientNet-B3 Model Architecture

The EfficientNet-B3 model is an advanced CNN designed to optimize compu-
ting resources and accuracy. Our adaptation accepts 224x224 RGB images and in-
corporates a compound scaling method that uniformly scales the network’s width,
depth, and resolution. The model’s architecture starts with a convolutional base
that captures complex patterns through a sequence of convolution layers, leading
to a dense feature representation. A flattening layer transitions the 2D feature maps
into a 1D vector, followed by a dense layer with dropout for regularization to miti-
gate overfitting. The final layer, a dense output with a sigmoid function, yields the
classification probability, indicating the presence or absence of malaria parasites.
Leveraging pre-trained weights from ImageNet, the model is fine-tuned on our
dataset with a reduced learning rate, allowing it to adapt to the specifics of medical
imaging for malaria detection.

e YOLOv11m Model Architecture

YOLOv11m represents the medium variant of the YOLOv11 family, an advan-
ced object detection model adapted here for malaria parasite classification. Figure
7 provides the evolution of YOLO algorithms over the years. YOLOv11 introduces
architectural innovations, including an enhanced backbone for superior feature
extraction, an advanced neck for improved feature aggregation, and an optimi-
zed head for precise localization and classification. These improvements enable
YOLOVI1 to handle challenges like varying object sizes and overlapping instan-
ces effectively. Benchmarking on diverse datasets shows YOLOv11 (Figure 8) out-
performing predecessors in accuracy while maintaining low inference time and
a compact model size of approximately 20.1 million parameters [29, 30]. In this
study, we fine-tuned YOLOv11m on segmented red blood cell images for binary
classification (parasitized vs. uninfected), leveraging its efficiency for potential re-
al-time deployment in resource-limited settings.
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Figure 7. Evolution of YOLO Algorithms throughout the years [29].
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—— Object Tracking

Figure 8. Key architectural modules in YOLO11 [30].
4. RESULTS AND DISCUSSIONS

4.1. Model Performance Evaluation Metrics

The performance of each model is evaluated using a suite of measurements,
each reflecting different aspects of accuracy and reliability. The table 2 sum-
marizing these metrics along with their respective equations and detailed
descriptions [31].
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Table 2. Evaluation metrics formulas with a detailed description.

Metric Formulas

Description

(TP +TN)
(TP + TN £ FP + FN)

Accuracy

TP
Precision m
TF
Recall [ —
(TP + FN)
2 = (Precision * Recall)
F1 Score
(Precision + Recall)
Matthews (TP +« TN — FP + FN] jlr
Correlation ‘-,'([(TP + FP] * I:TP —+ FN:I *
Coefficient (MCC) (TN + FP} * (TN + FN:']
Area Under the ROC
Curve Integral of ROC curve
(AUC ROC)
Area Under the
Precision-Recall Integral of Precision-Recall curve
Curve (AUC PR)

Measures the overall correctness of the
model by dividing the sum of correct
predictions by the total number of
predictions.

Assesses the models ability to return only
relevant instances, showing the proportion
of true positives among all optimistic
predictions.

Reflects the model’s capability to identify all
relevant instances, indicating the proportion
of true positives detected from all actual

positives.

Balance precision and Recall are instrumental
when the cost of false positives and false

negatives differ significantly.

Produces a high score only if the prediction
obtained good results in all four confusion

matrix categories relative to their sizes.

Represents the model’s ability to discriminate
between classes, with a higher area indicating

better performance.

Useful in imbalanced datasets, it shows the
relationship between precision and recall for
different probability thresholds.

4.2. Performance of the Models

We compared various deep-learning architectures to ascertain the most effec-
tive model for malaria detection from blood smear images. This section elucidates
the comparative analysis, grounded on the performance during training, validati-
on, and ultimately on unseen test data. The custom CNN model, designed as the
foundational benchmark for this study, underwent 20 epochs of training, a dura-
tion sufficient to observe convergence trends without overfitting. In the compara-
tive analysis of deep learning models for malaria detection, training accuracy is a
crucial measure of a model’s learning effectiveness over the training dataset. Figure
9 illustrates the evolution of training accuracy for six different models throughout

the training epochs.
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Training Accuracy Across Models
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Figure 9. Training Accuracy Across Models

The CNN model shows notable learning efficiency, displaying trends similar to
those of more sophisticated architectures, such as ResNet50 and VGG19. Notably,
EfficientNet-B3 emerges as a frontrunner, reaching and sustaining peak accuracy
levels more swiftly than its counterparts. This suggests that EfficientNet-B3’s stru-
cture, which balances network depth, width, and resolution, may be particularly
well-suited to this classification task. YOLOv11m demonstrates rapid convergen-
ce, achieving high accuracy with fewer parameters, making it suitable for efficient
deployment. On the other end of the spectrum, the EfficientNet-B7 model lags
slightly behind in training accuracy despite being part of the same family as Effi-
cientNet-B3. This could be due to its complexity, which might require more epochs
to fully capitalize on its learning capabilities, or it could be indicative of overfitting,
where the model complexity does not translate to better performance on the given
dataset. Figure 10 represents the training loss of the different models, illustrating
the effectiveness of the learning process of each model over the epochs.
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Figure 10. Training Loss Across Models
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The Custom CNN model initiates its training with a substantial decrease in
losses, reflecting a swift initial learning phase. On the other hand, the Efficient-
Net-B3 model demonstrates a consistent and uniform decline in loss, indicating a
methodical and stable learning trajectory. The EfficientNet-B7, despite being from
the same family, registers a higher loss comparatively. Other models, such as Res-
Net50 and VGGI9, present an even reduction in loss, attaining a minimal and
steady level early during training, which implies an effective learning mechanism
with minimal danger of overfitting. The more complex InceptionV3 architecture
also shows a reliable diminishment in loss across epochs. YOLOv11m exhibits low
and stable loss, benefiting from its optimized architecture for faster training. The
graph in Figure 11 illustrates the validation accuracy of various models throughout
the training epochs.
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Figure 11. Validation Accuracy Across Models

Despite some observed fluctuations, the Custom CNN model demonstrates
remarkable generalization ability, although slightly lower than the other models.
The EfficientNet-B3 model is a consistent leader, consistently achieving the hig-
hest validation accuracy and demonstrating excellent predictive performance on
previously unseen data. On the other hand, the EfficientNet-B7 model, despite its
sophisticated structure, displays a lower generalization capacity than its Efficient-
Net equivalent and also shows fluctuations in validation accuracy. YOLOvIIm
maintains high validation accuracy with minimal fluctuations, underscoring its
robustness.
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4.3. Result on Test Data

Table 3. Summary of Test Evaluation Metrics Across Models (%).

Model F1Score Accuracy Precision Recall MCC AUCROC AUC
Custom CNN 93.84 93.38 89.50 98.62 87.19 9791 97.38
ResNet50 96.57 96.44 95.27 97.91 92.92  98.66 98.21
VGG19 96.13 95.99 94.89 97.41 92.01 98.69 98.35
InceptionV3 97.12 97.01 95.63 98.65 94.05  99.25 99.17
EfficientNet-B3  98.12 98.08 98.36 97.87 96.15 99.59 99.53
EfficientNet-B7  95.98 95.77 93.33 98.79 91.69  98.81 98.14
YOLOv1Im 96.89 96.93 98.32 95.50 9391 99.53 99.57

In summarizing the comparative performance of the deep learning models,
Table 3 elucidates the remarkable proficiency of the EfficientNet-B3 model ac-
ross all evaluated metrics. It achieves the highest F1 Score of 98.12%, Accuracy of
98.08%, and an impressive Matthews Correlation Coefficient (MCC) of 96.15%,
underscoring its superior predictive capabilities. Precision stands at 98.36%, with
Recall at 97.87%, highlighting the model’s exceptional balance between sensiti-
vity and specificity. YOLOv11m performs competitively, with a high precision of
98.32% and AUC PR of 99.57%, indicating its strength in minimizing false positi-
ves, which is critical for medical diagnostics.
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Figure 12. Classification Results from Different CNN Architectures
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To complement the quantitative analysis visually, Figure 12 presents the clas-
sification results from the various CNN architectures, showcasing their predictive
performance on sample images. This illustration reflects the numerical data from
Table 5 and provides an intuitive understanding of how each model differentiates
between ‘Parasitized’ and ‘Uninfected’ cells.
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Figure 13. EfficientNet-B3 model Confusion Matrix

The confusion matrix for EfficientNet-B3 (Figure 13) further substantiates its
efficacy, demonstrating a high actual positive rate with 2,652 parasitized cases ac-
curately identified and 2,684 uninfected cases correctly recognized. The model’s
precision is evidenced by its minimal misclassification, with only 84 parasitized
cases mistaken as uninfected and 91 uninfected cases incorrectly labelled as pa-
rasitized. This minimal error margin underscores EfficientNet-B3’s potential as a
leading model for reliable malaria detection, which is crucial for clinical settings
where the stakes for accurate diagnosis are high.

To assess feasibility for real-time applications, we compared computational
requirements across models (Table 4). YOLOv11m, with 20.1 million parameters,
offers a balance between performance and efficiency, making it ideal for deploy-
ment on mobile or edge devices in low-resource settings. In contrast, Efficient-
Net-B7’s higher parameter count (192.24 million) may limit its practicality despite
strong metrics.
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Table 4. Computational Requirements for All Models (Parameters in Millions)

Model Parameters (M)
Custom CNN 12.88

ResNet50 126.30

VGG19 45.72
InceptionV3 74.20
EfficientNet-B3 87.77
EfficientNet-B7 192.24
YOLOvIIm 20.10

The high performance of EfficientNet-B3 and the lightweight YOLOv11m sug-
gests their potential for deployment in clinical settings, particularly in malaria-en-
demic regions. YOLOv11m’s low computational requirements make it ideal for
mobile or edge devices in low-resource settings, enabling rapid malaria diagnosis
where access to advanced hardware is limited. Integration with existing healthcare
systems could involve deploying these models on cloud platforms or portable de-
vices, enhancing accessibility in rural areas.

Regarding false positives (FP) and false negatives (FN), EfficientNet-B3’s high
precision (98.36%) minimizes FP, reducing unnecessary treatments and associated
costs/side effects. Its recall (97.87%) limits FN, ensuring few infected cases are mis-
sed, which is vital to prevent disease progression and transmission. YOLOv11m’s
even higher precision (98.32%) further reduces FP, though slightly lower recall
(95.50%) indicates a trade-oft; overall, both models mitigate diagnostic errors effe-
ctively compared to manual microscopy.

The implications of these findings are profound, especially considering the
high burden of malaria and the limitations of traditional diagnostic methods. By
automating the detection and classification process, deep learning models can as-
sist in alleviating the workload on healthcare systems and improving the speed
and accuracy of diagnoses, thus saving lives through timely treatment. However,
this study has limitations. The reliance on a single dataset for model training and
evaluation, while providing a controlled environment for comparison, does not
account for the variability and complexity of real-world scenarios. To address this,
future work will validate the models on additional datasets, such as the Malaria
Bounding Box dataset, to ensure robustness across diverse imaging conditions. Fu-
ture research should focus on applying these models to diverse and more extensive
datasets, real-time analysis, and integrating such models into existing healthcare
infrastructure. Furthermore, while the study focuses on binary classification, the
natural progression of this work would involve multi-class classification to iden-
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tify different life stages of malaria parasites, which is crucial for understanding the
disease progression and tailoring treatment strategies accordingly. A comparison
with other studies in the literature is given in Table 5.

Table 5. Comparison with other studies in the literature

Reference Algorithms F1Score Accuracy Precision Recall AUCROC
Magsood etal. [11] CNN 96.82 96.82 96.82 96.33 -
Nakasi et al. [18] Faster-RCNN - 93.03 72.29 - -
Zamora et al. [32] SVM - - - 94.00 -
Bibin et al. [33] DBN . . 97.60 ,
Sarkar et al. [34] VGGI19 96.16 96.15 97.54 94.82 -
Quan et al. [19] ADCN 97.50 97.47 B 97.86 .
Our work EfficientNet-B3 98.12 98.08 98.36 97.87 99.59

5. CONCLUSION

This study has comprehensively evaluated a custom-designed Convolutional
Neural Network (CNN) against five state-of-the-art transfer learning models in
classifying malaria parasites from segmented red blood cell images. The results un-
deniably highlight the potential of deep learning techniques in public health, par-
ticularly for malaria-endemic regions in sub-Saharan Africa. The EfficientNet-B3
model’s performance was notably superior, with high scores in accuracy, precision,
Recall, and other metrics, demonstrating its robustness in malaria parasite classi-
fication tasks. This underscores the effectiveness of CNNGs, especially those with
compound scaling and advanced optimization, for medical image analysis. YO-
LOvI1m provided a compelling alternative, offering high precision and efticiency
with fewer parameters, making it suitable for low-resource environments. While
not surpassing the transfer learning models, the custom CNN still performed ad-
mirably, validating the potential for developing tailored deep learning solutions
that are more accessible and potentially more adaptable to specific local contexts.
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