CRISPR-Cas9 gen düzenleme sistemi ve hastalıklar için tedavi yaklaşımı
Anahtar Kelimeler:
CRISPR-Cas9, genom düzenleme, insan hastalıkları, terapötiklerÖzet
Kümelenmiş, düzenli aralıklarla kısa palindromik tekrar (CRISPR'ler) dizileri, birçok bakterinin ve neredeyse tüm arkelerin genomlarında yaygındır. CRISPR/Cas9 gen düzenlemesi için güçlü bir teknolojidir. Yüksek özgüllüğü ve etkinliği nedeniyle, CRISPR/Cas9, çoklu genetik değişiklikleri içeren insan hastalıklarının tedavisinde, özellikle kanser için yaygın olarak kullanılmaktadır. CRISPR/Cas9 tarafından farklı hastalıkların tedavisi kavramları oluşturulmuştur. Bununla birlikte, klinik uygulamaları için önemli zorluklar devam etmektedir. Terapötik potansiyelin yanı sıra, CRISPR-Cas9 aracı, ilaç keşfi ve geliştirilmesi için genetik olarak engellenmiş hayvan modelleri oluşturmak için de uygulanabilir. Bu derleme makalesi, CRISPR-Cas9 sistemlerinin kökenini ve kanser, alerji, immünolojik bozukluklar, Duchenne kas distrofisi, kardiyovasküler bozukluklar, nörolojik bozukluklar, kistik fibroz, gözle ilgili bozukluklar dahil olmak üzere çeşitli genetik bozukluklara karşı terapötik potansiyellerini tartışmaktadır.
Referanslar
Rath, D., et al., The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie, 2015. 117: p. 119-28.
Mojica, F.J., et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution, 2005. 60(2): p. 174-182.
Bolotin, A., et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005. 151(8): p. 2551-2561.
Sorek, R., V. Kunin, and P. Hugenholtz, CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol, 2008. 6(3): p. 181-6.
Ishino, Y., et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 1987. 169(12): p. 5429-5433.
Jansen, R., et al., Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 2002. 43(6): p. 1565-1575.
Barrangou, R., et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007. 315(5819): p. 1709-1712.
Horvath, P., et al., Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of bacteriology, 2008. 190(4): p. 1401-1412.
Deveau, H., et al., Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of bacteriology, 2008. 190(4): p. 1390-1400.
Marraffini, L.A. and E.J. Sontheimer, Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 2010. 463(7280): p. 568-571.
Mirza, Z. and S. Karim. Advancements in CRISPR/Cas9 technology—Focusing on cancer therapeutics and beyond. in Seminars in Cell & Developmental Biology. 2019. Elsevier.
Liu, H., L. Wang, and Y. Luo, Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018. 3(4): p. 217-228.
Jiang, W. and L.A. Marraffini, CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annual review of microbiology, 2015. 69: p. 209-228.
Jinek, M., et al., A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 2012. 337(6096): p. 816-821.
Liu, C., et al., Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of controlled release, 2017. 266: p. 17-26.
Lin, S., et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife, 2014. 3: p. e04766.
Genovese, P., et al., Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014. 510(7504): p. 235-240.
Cong, L., et al., Multiplex genome engineering using CRISPR/Cas systems. Science, 2013. 339(6121): p. 819-823.
Gupta, D., et al., CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life sciences, 2019. 232: p. 116636.
Bibikova, M., et al., Enhancing gene targeting with designed zinc finger nucleases. Science, 2003.
Christian, M., et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010. 186(2): p. 757-761.
Wolfe, S.A., L. Nekludova, and C.O. Pabo, DNA recognition by Cys2His2 zinc finger proteins. Annual review of biophysics and biomolecular structure, 2000. 29(1): p. 183-212.
Muenzer, J., et al., CHAMPIONS: A phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter syndrome). Mol. Genet. Metab, 2019. 126: p. S104.
Cannon, P. and C. June, CCR5 knockout strategies. Current Opinion in HIV and AIDS, 2011. 6(1): p. 74.
Lino, C.A., et al., Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 2018. 25(1): p. 1234-1257.
Yang, H., et al., CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific reports, 2017. 7(1): p. 1-13.
Komor, A.C., et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016. 533(7603): p. 420-424.
Jiang, F. and J.A. Doudna, CRISPR–Cas9 structures and mechanisms. Annual review of biophysics, 2017. 46: p. 505-529.
Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. cell, 2000. 100(1): p. 57-70.
Alfarouk, K.O., et al., Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer cell international, 2015. 15(1): p. 1-13.
Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674.
Murati, A., et al., Myeloid malignancies: mutations, models and management. BMC cancer, 2012. 12(1): p. 1-15.
Valletta, S., et al., ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget, 2015. 6(42): p. 44061.
Craig, R., MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia, 2002. 16(4): p. 444-454.
Liu, T., et al., Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget, 2016. 7(50): p. 83502-83513.
Tang, H. and J.B. Shrager, CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO Mol Med, 2016. 8(2): p. 83-5.
Birling, M.C., Y. Herault, and G. Pavlovic, Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome, 2017. 28(7-8): p. 291-301.
Matano, M., et al., Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med, 2015. 21(3): p. 256-62.
Vormittag, P., et al., A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol, 2018. 53: p. 164-181.
Park, J.H., et al., Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med, 2018. 378(5): p. 449-459.
Goodman, M.A., et al., CRISPR/Cas9 in allergic and immunologic diseases. Expert Rev Clin Immunol, 2017. 13(1): p. 5-9.
Chu, H.W., et al., CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther, 2015. 22(10): p. 822-9.
Su, S., et al., CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep, 2016. 6: p. 20070.
Chang, C.W., et al., Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep, 2015. 12(10): p. 1668-77.
Guo, C., et al., Absence of alpha 7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum Mol Genet, 2006. 15(6): p. 989-98.
van Agtmaal, E.L., et al., CRISPR/Cas9-Induced (CTGCAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing. Mol Ther, 2017. 25(1): p. 24-43.
Zhang, Y., et al., Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv, 2020. 6(8): p. eaay6812.
Bergeron, N., et al., Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk. Circulation, 2015. 132(17): p. 1648-66.
Jiang, C., et al., A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res, 2017. 27(3): p. 440-443.
Jarrett, K.E., et al., Somatic Editing of Ldlr With Adeno-Associated Viral-CRISPR Is an Efficient Tool for Atherosclerosis Research. Arterioscler Thromb Vasc Biol, 2018. 38(9): p. 1997-2006.
Tessadori, F., et al., Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech, 2018. 11(10).
Shin, J.W., et al., Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet, 2016. 25(20): p. 4566-4576.
Monteys, A.M., et al., CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol Ther, 2017. 25(1): p. 12-23.
Poon, A., et al., Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer's disease patient carrying a L150P mutation in presenilin 1. Stem Cell Res, 2016. 17(3): p. 466-469.
Gyorgy, B., et al., CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Mol Ther Nucleic Acids, 2018. 11: p. 429-440.
Singh, K., et al., Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9. Mol Ther, 2018. 26(5): p. 1241-1254.
Li, H., et al., Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther, 2020. 5(1): p. 1.
Marangi, M. and G. Pistritto, Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique. Front Pharmacol, 2018. 9: p. 396.
Crane, A.M., et al., Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports, 2015. 4(4): p. 569-77.
Schwank, G., et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013. 13(6): p. 653-8.
Shintani, K., D.L. Shechtman, and A.S. Gurwood, Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry, 2009. 80(7): p. 384-401.
Wang, D.Y., et al., Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta, 2005. 351(1-2): p. 5-16.
Bakondi, B., et al., In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Mol Ther, 2016. 24(3): p. 556-63.
Shiels, A. and J.F. Hejtmancik, Genetic origins of cataract. Arch Ophthalmol, 2007. 125(2): p. 165-73.
Yuan, L., et al., CRISPR/Cas9-Mediated Mutation of alphaA-Crystallin Gene Induces Congenital Cataracts in Rabbits. Invest Ophthalmol Vis Sci, 2017. 58(6): p. BIO34-BIO41.
Yuan, L., et al., CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep, 2016. 6: p. 22024.
Rose, B.I. and S. Brown, Genetically Modified Babies and a First Application of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9). Obstet Gynecol, 2019. 134(1): p. 157-162.